

Umweltforschungsplan des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit

Förderkennzeichen (UFOPLAN) 200 42 265

Automatische Klassifizierung der Luftschadstoff-Immissionsmessungen aus dem LIMBA-Meßnetz Anwendung · 3. Teilbericht

für Umweltbundesamt II 6.4 Postfach 33 00 22 D-14191 Berlin von

IVU Umwelt GmbH

Burgweg 10 · D-79350 Sexau

Telefon: 07641 53046
Telefax: 07641 53047
Dr.-Ing. Götz Wiegand
eMail: gw@ivu-umwelt.de
URL: http://www.ivu-umwelt.de

Juli 2002

Die Abbildung zeigt 98%-Wert von NO_2 über dem Jahresmittelwert von NO_x in $\mu g/m^3$ für die vier Stationstypen.

Inhaltsverzeichnis

1	Α	LLGEN	1EINES	. 6
1.1		Aufgal	penstellung	. 6
2	В	EZIEHU	JNGEN ZWISCHEN NO ₂ UND NO _X -MESSUNGEN	. 7
2.1		Allgem	neines	. 7
2	.2. .2.	1 M	onsformen odifizierte gebrochen rationale Funktion erwent-Middelton-Funktion	. 8
2	.3. .3. .3.	1 Da 2 M 3 De	ndung auf Stundenmittelwerte aten odifizierte gebrochen rationale Funktion erwent-Middelton-Funktion chlussfolgerungen	11 12 16
3	В	EZIEHU	UNGEN ZWISCHEN STATISTISCHEN KENNWERTEN VON NO2	18
3.1		Allgem	neines	18
3.2		Jahres	smittelwert NO ₂	18
3.3		Stunde	enmittelwert NO ₂	20
3.4		98%-V	Vert NO ₂ eines Jahres	23
4 PAI			JNGEN ZWISCHEN STATISTISCHEN KENNWERTEN VON (PM10)	26
4.1		Allgem	neines	26
4.2		Tages	mittelwert Partikel (PM10)	26

5	BEZIEHUNGEN ZWISCHEN STATISTISCHEN KENNWERTEN VON CO.	. 29
5.1	Allgemeines	. 29
5.2	Gleitender 8-Stunden-Mittelwert	. 29
6	SCHLUSSFOLGERUNGEN UND AUSBLICK	. 32
7	LITERATUR	. 33
8	ANHANG: PRÄSENTATION	34

Abbildungsverzeichnis

Abbildung 1	Messstelle Karl-Marx-Straße in Berlin 1998, 8'715 gültige Beobachtungen. Näheres siehe Text
Abbildung 2	Gebrochen rationale Funktion8
Abbildung 3	Modifiziert gebrochen rationale Funktion
Abbildung 4	Erster Quadrant der modifizierten gebrochen rationalen Funktion 9
Abbildung 5	Modifizierte gebrochen rationale Funktion für Jahresmittelwert und 98%- Wert des Jahres aus der VDI 3782, Blatt 8
Abbildung 6	Derwent-Middleton Funktion mit den von den Autoren angegebenen Parametern
Abbildung 7	NO_2 über NO_x für alle stündlichen Konzentrationen
Abbildung 8	NO ₂ über NO _x für alle stündlichen Konzentrationen im Jahre 1998 von den 26 verkehrsbezogenen Messstellen mit der Kombination aus linearer Funktion und gebrochen rationaler Funktion
Abbildung 9	Stundenmittelwerte NO_2 über NO_x der Messstation Hessen-Darmstadt-Hügelstraße in ppb für 1998 mit der modifizierten gebrochen rationalen Funktion
Abbildung 10	Stundenmittelwerte NO ₂ über NO _x der Messstation Sachsen-Leipzig-Mitte in ppb für 1998 mit der modifizierten gebrochen rationalen Funktion 15
Abbildung 11	Stundenmittelwerte NO_2 über NO_x aller verkehrsbezogenen Messstationen in $\mu g/m^3$ für 1998 mit dem Stundengrenzwert
Abbildung 12	${ m NO_2}$ über ${ m NO_x}$ für alle stündlichen Konzentrationen im Jahre 1998 von den 26 verkehrsbezogenen Messstellen mit der Dewent-Middelton-Funktion. 17
Abbildung 13	Jahresmittelwerte der NO_2 -Konzentrationen eines Jahres über den NO_x - Jahresmittelwerten für die vier Stationsgruppen: Land, Stadt, Verkehr und Berg
Abbildung 14	Jahresmittelwerte der NO_2 -Konzentrationen eines Jahres über den NO_x -Jahresmittelwerten für die städtischen Messstationen. Eingezeichnet ist die modifizierte gebrochen rationale Funktion und das 95%-Prognoseintervall. 20
Abbildung 15	99.79%-Wert der NO_2 -Konzentrationen eines Jahres über den NO_x -Jahresmittelwerten für die vier Stationsgruppen: Land, Stadt, Verkehr und Berg. 2'678 Zeitreihen aus den Jahren 1956 bis 1998 mit 169 mindestens 19maliger Überschreitungen des Grenzwertes von 200 μ g/m³. Die Darstellung ist hier der besseren Erkennbarkeit wegen beschränkt auf den Ordinatenbereich von 0 bis 500 μ g/m³.
Abbildung 16	Der NO ₂ -99.79%-Wert eines Jahres als Funktion des NO _x - Jahresmittelwertes für 2'198 Zeitreihen von städtischen Stationen mit einer angepassten modifizierten gebrochen rationalen Funktion, mit dem 95%- Vorhersageband
Abbildung 17	Empirische Wahrscheinlichkeit der mindestens 19maligen Grenzwertüberschreitung von 200 $\mu g/m^3$ NO $_2$ als Funktion des Jahresmittelwertes von NO $_x$ in $\mu g/m^3$. Die Unsicherheit wird durch das

	einfache Standardabweichungsintervall der Schätzung dargestellt 23
Abbildung 18	Jahres-98%-Werte der NO_2 -Konzentrationen eines Jahres über den NO_x -Jahresmittelwerten für die vier Stationsgruppen: Land, Stadt, Verkehr und Berg. 2'678 Beobachtungen aus den Jahren 1956 bis 1998 mit 28 Überschreitungen des Grenzwertes von 160 μ g/m³. Die Darstellung ist hier der besseren Erkennbarkeit wegen beschränkt auf den Ordinatenbereich von 0 bis 300 μ g/m³.
Abbildung 19	Jahres-98%-Werte der NO_2 -Konzentrationen eines Jahres über den NO_x -Jahresmittelwerten für die städtischen Messstationen. Eingezeichnet ist die modifiziert gebrochen rationale Funktion und das 95%-Prognoseintervall.24
Abbildung 20	Linearen Regressionsfunktionen des 90.42%-Werts der PM10- Konzentrationen eines Jahres über den PM10-Jahresmittelwerten für die vier Stationsgruppen: Land, Stadt, Verkehr und Berg. In der Legende ist der jeweilige Erklärungswert eingetragen
Abbildung 21	PM10-90.42%-Wert eines Jahres als Funktion des PM10-Jahresmittelwertes für 2'110 Zeitreihen von städtischen Stationen mit einer angepassten linearen Funktion, mit dem 95%-Vorhersageband. In 57% der städtischen Zeitreihen zwischen 1990 und 1998 tritt eine mehr als 35malige Überschreitung des Grenzwertes von 50 μg/m³ auf
Abbildung 22	Maximalwert der Zeitreihe der gleitenden 8-Stunden-Mittelwerte der CO-Konzentrationen über dem Jahresmittelwert der CO-Konzentrationen in mg/m³ für die vier Stationstypen der Jahre 1997 und 1998
Abbildung 23	Maximalwert der Zeitreihe der gleitenden 8-Stunden-Mittelwerte der CO-Konzentrationen über dem Jahresmittelwert der CO-Konzentrationen in mg/m³ für die städtischen Stationen der Jahre 1997 und 1998. Eingezeichnet ist neben der linearen Regressionsgerade das 95%-Konfidenzband der Regression und das 95%-Prognoseintervall. Es handelt sich um 474 Datenpunkte, davon sind 15 Überschreitungen des Grenzwertes.

Tabellenverzeichnis

rapelle i	Funktionen [NO ₂] = f([NO _x]) geschätzt wurden. Die Spalten bedeuten: Laufend Nummer, Code der Station, Anzahl gültiger Beobachtungen und Name der Station.	le
Tabelle 2	Kennwerte der Schätzung der modifizierten gebrochen rationalen Funktionen $\{[NO_2] = f([NO_x])\}$. Die Koeffizienten A, B und C wurden simultan geschätzt, sie sind zusammen mit der Standardabweichung der Residuen angegeben 12	
Tabelle 3	Kennwerte der vier Stationsgruppen aus Abbildung 15	3
Tabelle 4	Koeffizienten der modifiziert gebrochen rationalen Funktion für die Stationstypen Land, Stadt und Verkehr. Für Berg-Stationen war der maximale NO ₂ -Jahresmittelwert 20 µg/m³, das ist 50% des Grenzwertes, darum sind keine Koeffizienten angegeben. Alle Koeffizienten sind signifikant von Null verschieden	
Tabelle 5	Kennwerte der vier Stationsgruppen aus Abbildung 15 21	1
Tabelle 6	Statistische Kennwerte der Stationsgruppen Stadt und Verkehr. Koeffizienten aus der logistischen Funktion und mittlere Standardabweichung. Für Berg- und Landstationen traten nahezu keine Überschreitungen auf	
Tabelle 7	Kennwerte der vier Stationsgruppen aus Abbildung 18 23	3
Tabelle 8	Koeffizientenschätzwerte der gebrochen rationalen Funktion für die städtische Messstationen	
Tabelle 9	Kennwerte der vier Stationsgruppen, deren Regressionsgeraden in Abbildung 20 dargestellt sind	
Tabelle 10	Statistische Kenngrößen für die Koeffizienten der Regression des 90.42%-Wertes PM10 auf den Jahresmittelwert PM10 für die vier unterscheidbaren Stationsgruppen	3
Tabelle 11	Kennwerte der vier Stationsgruppen aus Abbildung 22)
Tabelle 12	Statistische Kenngrößen für die Koeffizienten der Regression des gleitenden 8h-Mittelwertesvon CO auf den Jahresmittelwert CO für die vier unterscheidbaren Stationsgruppen	ĺ
Tabelle 13	Zusammenstellung der Koeffizienten der Gleichungen für die verschiedenen Grenzwerte am Beispiel der Stadtstationen	,

1 Allgemeines

1.1 Aufgabenstellung

Die EU-Luftqualitätsrahmenrichtlinie (RRL 96/62/EU) und die Tochterrichtlinien (TRL 1999/30/EG) und (TRL 2000/69/EG) setzen zur Bewertung der Luftqualität die Kenntnis von statistischen Kenngrößen von Zeitreihen voraus, die man aus gemessenen Zeitreihen direkt ableiten kann.

Modellrechnungen werden in der RRL 96/62/EU ausdrücklich erwähnt. Allerdings wird nicht darauf eingegangen, wie man die Kenngrößen der Zeitreihen durch Modellrechnungen erhält. Es ist nicht trivial, gewisse Kenngrößen der Zeitreihen mit Modellen zu berechnen. So ist z. B. die 18-malige Überschreitung von 200 μ g/m³ des NO₂-Wertes mit Modellen kaum zu ermitteln. Hier ist die RRL 96/62/EU unseres Erachtens nicht vollständig.

Das heute übliche Vorgehen, den statistischen Zusammenhang zwischen dem z. B. Jahresmittelwert und den interessierenden Kenngrößen aus *allen* verfügbaren Zeitreihen abzuleiten, ist ein suboptimales Vorgehen, denn es werden Zeitreihen von z. B. Bergstationen mit Zeitreihen von ausgeprägten Verkehrsstationen zusammen ausgewertet, obwohl sie unterschiedliche Zeitreihencharakteristika und statistische Kennwerte haben.

Diese unterschiedlichen Zeitreihencharakteristika auszunutzen, um ein automatisches Klassifikationsverfahren zu finden, ist die Grundidee des hier beschriebenen Vorhabens.

In dem Dateisystem des UBA liegen Zeitreihen für über 1'000 Stationen vor. Die UBA-Stationsklassifikation gibt eine Einordnung für 377 Stationen: 228 Stadt, 72 Land, 69 Verkehr und 8 Berg.

Die UBA-Stationsklassifikation soll mit nachvollziehbaren Verfahren fundiert werden. Dabei sollen möglichst viele Stationen klassifiziert werden.

In diesem Bericht wird zunächst versucht eine Beziehung zwischen den Einzelmessungen von NO_x und NO_2 abzuleiten.

Daran anschließend wird die Klassifikation der Stationstypen auf die Abschätzung von statistischen Kennwerten der Messreihen behandelt. Es werden Funktionen von Mittelwerten und Überschreitungshäufigkeiten der Luftschadstoff-Messreihen NO₂/NO_x Partikeln und CO abgeleitet.

2 Beziehungen zwischen NO₂ und NO_x-Messungen

2.1 Allgemeines

Die 1. Tochterrichtlinie zur EU-Luftqualitätsrahmenrichtlinie der EU definiert einen Grenzwert für NO₂ als extremes Perzentil¹. An Stellen, an denen EU-konform gemessen wird, macht die Ermittlung keine Probleme.

Da NO₂ aber ein chemisch aktiver Stoff ist, sind Luftqualitätsmodellierungen extrem aufwendig. Modellierungen erfordern dreidimensionale Euler-Modelle mit einer kompletten Luftchemie. Solche Gittermodelle liefern als Ergebnis naturgemäß Mittelwerte der Gitter, also keine punktscharfen Informationen, wie sie als Messwerte vorliegen. So gesehen ist es praktisch unmöglich eine Zeitreihe von NO₂ an der Stelle, an der gemessen wird, zu modellieren.

Modellieren kann man hingegen die Konzentrationen von NO_X , also der Stickoxide. Dies ist auch mit weniger aufwendigen Modellen² möglich. Wenn es möglich wäre, eine Funktion zu finden, die NO_X mit NO_2 Konzentrationen mit hinreichender Genauigkeit verknüpft, so würde es genügen, den Stundenmittelwert von NO_X zu modellieren und auf den Stundenmittelwert von NO_2 zu schließen. Aus der Zeitreihe von NO_2 -Stundenmittelwerten kann man dann beliebige statistische Kennwerte ermitteln.

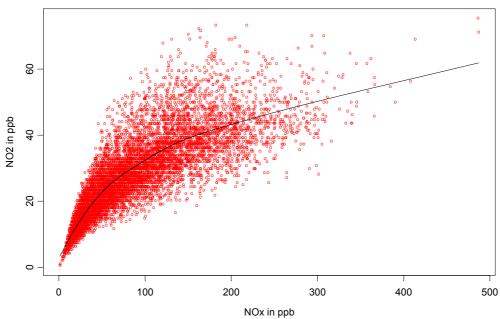


Abbildung 1 Stundenmittelwerte NO_2 gegen Stundenmittelwerte NO_x in ppb für die Messstelle Karl-Marx-Straße in Berlin 1998, 8'715 gültige Beobachtungen. Näheres siehe Text.

Abbildung 1 zeigt den Scatterplot von Stundenmittelwerten NO_2 gegen NO_x in ppb für die Messstelle Karl-Marx-Straße in Berlin für 1998. Die volumenabhängige Konzentrationsangabe (ppb) ist gegenüber der massenabhängigen ($\mu g/m^3$) hier vorzuziehen, da chemische Prozesse betrachtet werden und diese in der Regel massen-

² z. B. IMMIS^{net}, LASAT, etc.

_

¹ NO₂ darf als Stundenmittelwert nicht mehr als 18mal den Wert von 200 μg/m³ überschreiten, das bedeutet, wenn der 99.79%-Wert 200 μg/m³ überschreitet, dann ist der Grenzwert überschritten.

unabhängig ablaufen. Zudem ist die Funktion von Derwent/Middelton (R.G.Derwent and D.R.Middleton, 1996), auf die hier Bezug genommen wird, in ppb geschätzt. Man erkennt in der Abbildung 1 eine Streuung, die einen regelmäßigen nichtlinearen Verlauf überlagert. Dieser nichtlineare Verlauf ergibt sich durch die Überlagerung mehrerer Prozesse: Die NO₂-Konzentration kann sich unter anderem durch turbulente Verdünnung oder durch die Umwandlung von NO- in NO₂-Moleküle verändern.

Die nichtlineare Funktion ist in Abbildung 1 durch eine lokale Regressionsfunktion wiedergegeben, die circa ¾ der Variation in der stündlichen NO₂-Konzentration erklärt. Zunächst werden geeignete parametrische Funktionsformen untersucht, die diesen Funktionsverlauf approximieren.

2.2 Funktionsformen

2.2.1 Modifizierte gebrochen rationale Funktion

Ein Beispiel für eine modifizierte gebrochen rationale Funktion gibt die zurückgezogene Richtlinie VDI 3782 Blatt 8. Dort sind Parameter für den Zusammenhang des Jahresmittelwertes und des Jahres-98%-Wertes von NO_x und NO₂ angegeben.

Die gebrochen rationale Funktion lautet allgemein:

$$R(x) = \frac{P_m(x)}{Q_n(x)} \quad \text{mit} \quad Q_n(x) \neq 0, P_m(x) \, \text{und} \, Q_n(x) \\ \text{Polynome vom Grade m und n}$$

Mit $P_m(x) = A \cdot X$ und $Q_n(x) = B + X$ ergibt sich ein Bild wie in Abbildung 2 gezeigt:

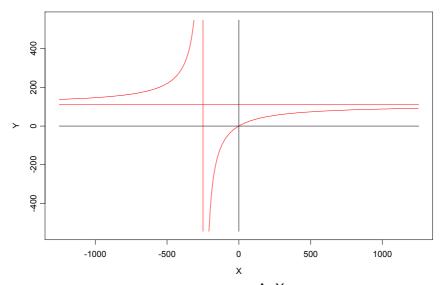


Abbildung 2 Gebrochen rationale Funktion $Y = \frac{A \cdot X}{B + X}$ mit A = 110 und B = 250. Die Kurve hat die beiden Asymptoten Y = A und X = -B.

Wenn man einen Bruchteil von X zu der Funktion addiert, so erhält man ein Bild wie in Abbildung 3 gezeigt:

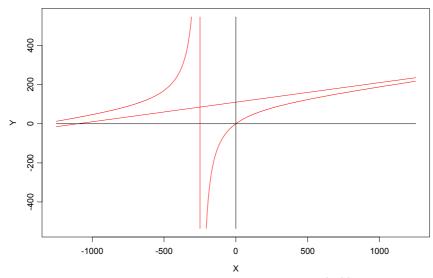


Abbildung 3 Modifiziert gebrochen rationale Funktion $Y = \frac{A \cdot X}{B + X} + C \cdot X$ mit A = 110, B = 250 und C = 0.1. Die Kurve hat die beiden Asymptoten $Y = A + C \cdot X$ und X = -B.

Im ersten Quadranten (Abbildung 4) zeigt diese Funktion das gewünschte Verhalten: sie geht durch den Nullpunkt und nähert sich asympotisch einem positiv konstanten Anstieg.

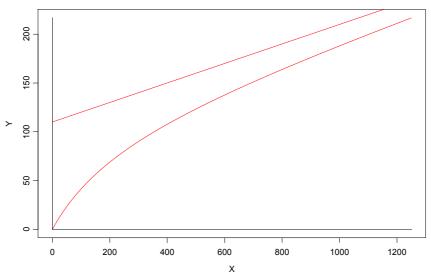


Abbildung 4 Erster Quadrant der modifizierten gebrochen rationalen Funktion.

In der Anwendung auf den Jahresmittelwerte von NO_x und NO_2 lautet die Funktion mit den in der VDI 3782 Blatt 8 angegebenen Parametern:

$$[NO_2] = \frac{103 \cdot [NO_x]}{130 + [NO_x]} + 0.005 \cdot [NO_x].$$
 Die Konzentrationen [NO_x] und [NO₂] sind in µg/m³ anzugeben.

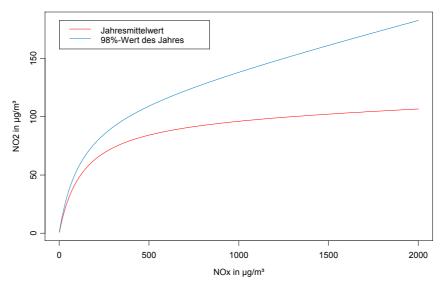


Abbildung 5 Modifizierte gebrochen rationale Funktion für Jahresmittelwert und 98%-Wert des Jahres aus der VDI 3782, Blatt 8. Näheres siehe Text.

2.2.2 Derwent-Middelton-Funktion

Die Funktionsform, die Derwent und Middleton für Stundenwerte von NO_x und NO_2 in einer Kurznote in Jahre 1996 veröffentlichten (R.G.Derwent and D.R.Middleton, 1996), ist offensichtlich durch Anpassung an einen empirischen Datensatz entstanden (Derwent, R.G., Middelton, D.R., Field R.A., Goldstone M.E., Lester J.N., Perry R., 1995), es liegt ihr kein unmittelbar erkennbarer theoretischer Ansatz zugrunde.

$$[NO_2] = A - [NO_x] \cdot [B + C \cdot log_{10}([NO_x]) + D \cdot log_{10}^{2}([NO_x]) + C \cdot log_{10}^{3}([NO_x])]$$

Mit A = +2.166,

B = +1.236,

C = -3.348,

D = +1.933 und

E = -0.326

ergibt sich die grafische Darstellung der Abbildung 6.

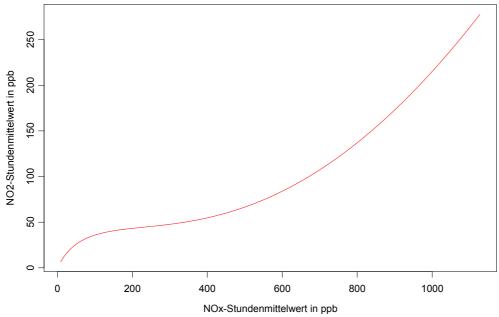


Abbildung 6 Derwent-Middleton Funktion mit den von den Autoren angegebenen Parametern. Näheres siehe Text.

Das asymptotische Verhalten dieser Funktion ist unerwünscht, denn bei großen NO_x -Konzentrationen wird NO_2 schnell größer als NO_x . Darum schränken die Autoren den Anwendungsbereich der Funktion auf 9 ppb bis 1'127 ppb ein.

2.3 Anwendung auf Stundenmittelwerte

2.3.1 Daten

Da die Untersuchung von Stundenwerten große Datenmengen benötigt, wird die Analyse auf Verkehrsmessstationen des Jahres 1998 beschränkt. Die Verkehrsmessstationen werden aufgrund des 2. Teilberichtes über Klassifizierung (IVU Umwelt 2002.2) identifiziert.

Tabelle 1 26 Verkehrsbezogene Zeitreihen von NO_2 und NO_x aus dem Jahr 1998, für die Funktionen $[NO_2]$ = $f([NO_x])$ geschätzt wurden. Die Spalten bedeuten: Laufende Nummer, Code der Station, Anzahl gültiger Beobachtungen und Name der Station.

Nr	valid	Name		
1	8346	Oranienburg Bernauer Str.		
2	8313	Charlottenburg-Lerschpfad		
3	8593	Steglitz Schildhornstr.		
4	8715	Karl-Marx-Straße		
5	7679	Frankfurter Allee		
6	8702	Karlsruhe-Mitte		
7	8711	Karlsruhe Straße		
8	8719	Ulm-Straße		
9	8505	Mannheim-Straße		
10	8485	Darmstadt-Hügelstraße		
11	8020	Hamburg-Stresemannstr		
12	8623	Rostock-Holbeinpl.		
13	8472	Neubrandenburg		
14	8730	Schwerin		
15	8538	Stralsund		
16	8743	Trier Ostallee		
17	8245	Pirmasens Park-Brauerei		
18	8710	Kiel-Schützenwall Verk.		
19	8519	Lübeck-Lindenplatz Verk.		
20	8676	Kiel-Westring Verk.		
21	8449	Leipzig-Mitte		

22	8652	Dresden-Nord	
23	8677	Halle/Verkehr	
24	7744	Weißenfels/Verkehr	
25	8645	Pößneck	
26	8494	Weimar Sophienstiftsplatz	

2.3.2 Modifizierte gebrochen rationale Funktion

Die modifizierte gebrochene rationale Funktion lautet allgemein:

$$[NO_2] = \frac{A \cdot [NO_x]}{B + [NO_x]} + C \cdot [NO_x].$$

Die Kennwerte der nichtlinearen Schätzung sind in Tabelle 2 angegeben.

Tabelle 2 Kennwerte der Schätzung der modifizierten gebrochen rationalen Funktionen $\{[NO_2] = f([NO_x])\}$. Die Koeffizienten A, B und C wurden simultan geschätzt, sie sind zusammen mit der Standardabweichung der Residuen angegeben.

Nr	Code	A	В	С	r²
1	BB018S98	+61.34713	+92.39141	+0.03165	83%
2	BE014S98	+42.04738	+78.43477	+0.01343	62%
3	BE061S98	+52.68603	+81.97527	+0.02256	70%
4	BE064S98	+49.10942	+64.55129	+0.02743	72%
5	BE065S98	+42.96110	+51.81388	+0.01625	71%
6	BW001S98	+46.92384	+44.20666	+0.02955	69%
7	BW080S98	+40.73639	+40.32043	+0.06227	63%
8	BW096S98	+53.92113	+51.87728	+0.00485	61%
9	BW098S98	+56.70386	+47.99167	+0.00965	46%
10	HE040S98	+33.45098	+29.43358	+0.05677	66%
11	HH026S98	+35.17798	+38.93761	+0.08326	81%
12	MV002S98	+41.47298	+42.08031	+0.02606	84%
13	MV003S98	+48.24145	+51.75875	-0.01546	79%
14	MV005S98	+47.82688	+49.19065	-0.00595	77%
15	MV006S98	+51.13908	+59.28840	+0.01826	87%
16	RP020S98	+47.77949	+42.71450	+0.01208	69%
17	RP031S98	+44.77365	+61.00991	+0.03453	76%
18	SH007S98	+52.08558	+47.45997	-0.00803	83%
19	SH010S98	+57.60641	+53.51592	-0.00950	79%
20	SH019S98	+43.93161	+52.47579	+0.04433	85%
21	SN025S98	+47.48880	+70.22439	+0.05722	79%
22	SN061S98	+55.72369	+68.33833	+0.04409	83%
23	ST075S98	+34.13170	+57.20209	+0.04039	73%
24	ST081S98	+31.54847	+52.24211	+0.06305	76%
25	TH008S98	+48.84312	+64.37105	+0.04583	80%
26	TH039S98	+42.38873	+49.73637	+0.12772	86%

In den 26 Fällen waren fast alle Koeffizienten signifikant, allerdings waren die Koeffizienten hochkorreliert. Inhaltlich liegt es daran, dass alle Parameter den Anstieg beschreiben. Faktisch bedeutet die hohe Korrelation der Koeffizienten, dass die Wirkung der Koeffizienten austauschbar ist.

Besonders fatal wirkt sich die Austauschbarkeit der Koeffizienten auf den Parameter C aus, denn der Parameter C ist in 4 der 26 Fälle negativ. Inhaltlich bedeutet das, dass mit ansteigendem stündlichen NO_x die Konzentration von NO_2 abnimmt. Dieses ist unplausibel und mit an Sicherheit grenzender Wahrscheinlichkeit eine Folge der hohen Korrelation der Koeffizienten. Die Funktionen mit einem negativen Koeffizienten C können nicht verwendet werden, da die in Kapitel 2.2.1 formulierten Eigenschaften verletzt sind.

Einen grafischen Überblick über die 26 Funktionen für die Verkehrsmessstationen gibt Abbildung 7.

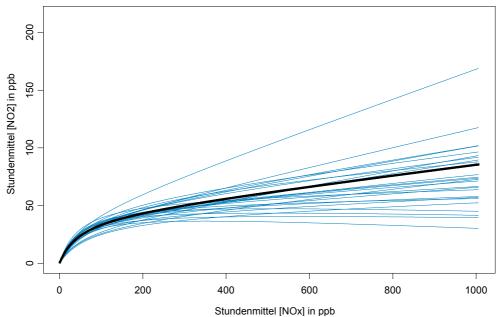


Abbildung 7 NO₂ über NO_x für alle stündlichen Konzentrationen (220'705 Datenpaare) im Jahre 1998 von den 26 verkehrsbezogenen Messstellen mit der gebrochen rationalen Funktion für alle Messstellen zusammen (fett) und den 26 einzelnen Funktionen (fein). Näheres siehe Text.

Man kann auch grafisch in der Abbildung 7 erkennen, dass sich unterschiedliche Koeffizienten für die 26 verkehrsnahen Stationen ergeben und einige C-Koeffizienten negativ sind.

Folgendes Vorgehen vermeidet die hohe Korrelation der Koeffizienten: Man teilt den NO_x-Bereich für jede Station in zwei gleich große Bereiche auf. Jetzt schätzt man eine lineare Funktion für den oberen Bereich $[NO_2] = \alpha + \beta \cdot [NO_x] + \epsilon$. Die gesamten $[NO_2]$ -Werte werden nun um den Nullpunkt mit dem Anstieg der linearen Funktion gedreht: $[NO_2]' = [NO_2] - \beta \cdot [NO_x]$. Die Punktwolke hat nun eine horizontale Asymptote, kann also durch eine klassische gebrochen rationale Funktion für den gesamten NO_x -Bereich geschätzt werden: $[NO_2]' = \frac{A \cdot [NO_x]}{B + [NO_x]} + \eta$. Jetzt kombiniert man den Anstieg aus der linearen Funktion mit der gebrochen rationalen Funktion zu der Approximationsgleichung: $[NO_2] = \frac{A \cdot [NO_x]}{B + [NO_x]} + \beta \cdot [NO_x]$.

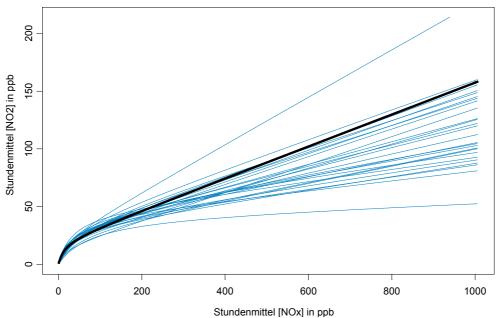


Abbildung 8 NO_2 über NO_x für alle stündlichen Konzentrationen (220'705 Datenpaare) im Jahre 1998 von den 26 verkehrsbezogenen Messstellen mit der Kombination aus linearer Funktion und gebrochen rationaler Funktion für alle Messstellen zusammen (fett) und den 26 einzelnen Funktionen (fein). Näheres siehe Text.

Als Beispiele seien hier die Messstationen, Hessen-Hügelstraße (Abbildung 9) und Sachsen-Leipzig-Mitte (Abbildung 10) dargestellt:

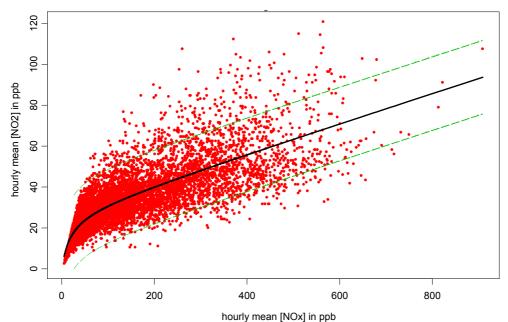


Abbildung 9 Stundenmittelwerte NO₂ über NO_x der Messstation Hessen-Darmstadt-Hügelstraße in ppb für 1998 mit der modifizierten gebrochen rationalen Funktion (Koeffizienten in Zeile 10 in Tabelle 2) und dem 95%-Prognoseintervall.

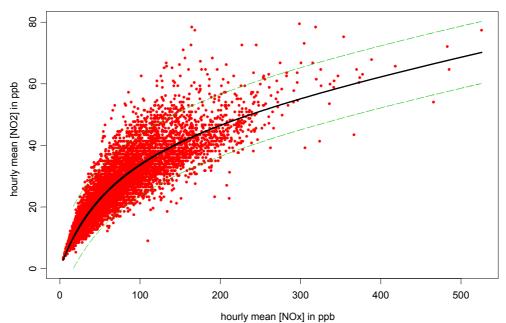


Abbildung 10 Stundenmittelwerte NO₂ über NO_x der Messstation Sachsen-Leipzig-Mitte in ppb für 1998 mit der modifizierten gebrochen rationalen Funktion (Koeffizienten in Zeile 21 in Tabelle 2) und dem 95%-Prognoseintervall.

Der Koeffizient C hat bei der eben beschriebenen kombinierten Regression für die 26 Modelle einen halb so großen Variationskoeffizienten³ wie bei der simultanen Schätzung der 3 Koeffizienten der modifizierten gebrochen rationalen Funktion. Vor allem ist der Koeffizient C in keinem Fall negativ.

Die übrigen statistischen Kennwerte⁴ der kombinierten Regression sind der Regression mit der modifizierten gebrochen rationalen Funktion ein wenig unterlegen.

Auf keinen Fall kann man die Aussage eines Modells generalisieren sondern es ergeben sich für die 26 verkehrsbezogenen Stationen 26 unterschiedliche Modelle, die allerdings jedes für sich einen beträchtlichen Erklärungswert (Mittelwert: 75%) haben.

Die modifizierte gebrochen rationale Funktion für alle Beobachtungen zusammen hat immerhin einen Erklärungswert von 72%. Jedoch sagt dieser Erklärungswert nichts über die Erklärung in dem Bereich von NO_2 aus, in dem der Grenzwert überschritten wird. Vielmehr sagt der Erklärungswert etwas über die Erklärung des Anstiegs aus. Der Anstieg von NO_2 über NO_x findet in einem relativ uninteressanten Bereich statt, nämlich bei geringen Konzentrationen von NO_x und NO_2 . Die Abbildung 11 gibt einen Eindruck von den Stundenmittelwerten der 26 verkehrsbezogenen Messstationen des Jahres 1998. Der Stunden-Grenzwert der 1. Tochterrichtlinie ist eingezeichnet. Man erkennt, dass der Grenzwert praktisch über den gesamten Bereich von NO_x überschritten wird.

³ Standardabweichung geteilt durch den Mittelwert

Der mittlere Erklärungsanteil betrug für die 26 Modelle r² = 75%. Im Mittel waren 91% des meansquare-errors stochastisch, 9% waren durch unterschiedliche Variation bedingt und der Bias war fast Null – wie bei Regressionsmodellen zu erwarten.

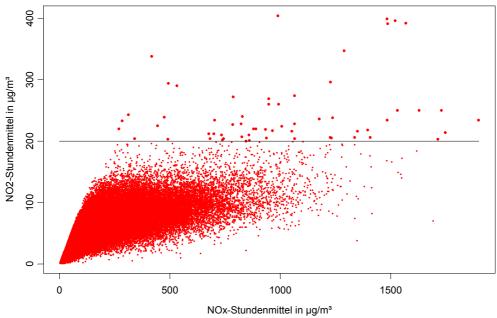


Abbildung 11 Stundenmittelwerte NO_2 über NO_x aller verkehrsbezogenen Messstationen in $\mu g/m^3$ für 1998 mit dem Stundengrenzwert. Näheres siehe Text.

2.3.3 Derwent-Middelton-Funktion

Wendet man den Funktionsansatz von Derwent-Middelton (R.G.Derwent and D.R.Middleton, 1996) auf die in Kapitel 2.3.1 beschriebenen Datensätze an, so erhält man ebenfalls 26 unterschiedliche Modelle. Die Koeffizienten dieser Modelle sind oft nicht signifikant von Null verschieden, was ein Indiz dafür ist, dass diese spezielle Funktionsform an einen bestimmten Datensatz angepasst wurde. Wenn man diese Funktionsform auf andere Datensätze anwendet, so erweist sie sich als deutlich überparametrisiert.

Man erkennt in Abbildung 12 die gewaltige Spannweite der unterschiedlichen Modellwerte in der oberen Hälfte des NO_x-Bereichs. Dies ist eine Folge der Überparametrisierung des Modells und der Korrelation der geschätzten Parameter.

Aufgrund des ungewöhnlich komplizierten Funktionsansatzes wird die Derwent-Middelton-Funktion in der weiteren Betrachtung nicht mehr berücksichtigt.

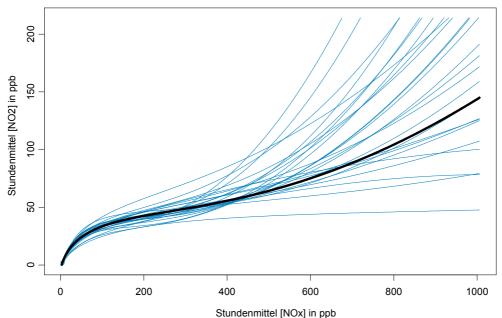


Abbildung 12 NO₂ über NO_x für alle stündlichen Konzentrationen (220'705 Datenpaare) im Jahre 1998 von den 26 verkehrsbezogenen Messstellen mit der Dewent-Middelton-Funktion für alle Messstellen zusammen (fett) und die 26 einzelnen Funktionen (fein). Näheres siehe Text.

2.3.4 Schlussfolgerungen

Als Konsequenz dieses Kapitels kann gefolgert werden, dass die statistische Modellierung der Stundenmittelwerte NO₂ als Funktion der Stundenmittelwerte NO_x zu keinen für die Grenzwerte der EU-Rahmenrichtlinien verwertbaren Ergebnissen führt.

Es ist zwar möglich, ein statistisches Modell für den überwiegenden Teil der NO₂/NO_x-Wertepaare abzuleiten, aber für die Überschreitungen ist das bedeutungslos, da sie überwiegend in einem Bereich liegen, der sehr schlecht modelliert wird (siehe Abbildung 11).

3 Beziehungen zwischen statistischen Kennwerten von NO₂

3.1 Allgemeines

Für photochemisch aktive Schadstoffe und auch für inerte Schadstoffe, die man nicht stundenweise modelliert, braucht man eine Beziehung zwischen einer leicht zu ermittelnden Größe und den Überschreitungshäufigkeiten. Der Jahresmittelwert ist eine Größe, die hinreichend stabil ist, daher ist der Jahresmittelwert in den meisten Fällen relativ leicht und zuverlässig zu modellieren.

Bei der Auswahl der Stationen, auf die man bei der statistischen Analyse zurückgreift, sollte man nur solche Stationen verwenden, die die gleichen Zeitreihencharakteristika aufweisen, wie der Ort, für den man das Perzentil oder die Überschreitungshäufigkeit ermitteln will. Es liegt nahe hierbei auf die Stationseinteilung: städtische Stationen, verkehrsbezogene Messstellen, ländliche Stationen und Bergstationen zurückzugreifen. In den ersten beiden Teilen dieses Berichtes wird ein nachvollziehbares Verfahren beschrieben, mit dem man die Stationen in die vier genannten Stationstypen einteilen kann. Hierdurch wird die Variabilität der statistischen Modelle vermindert.

Es gibt in der 1. Tochterrichtlinie (TRL 1999/30/EG) zwei Grenzwerte für NO₂:

- × Jahresmittelwert 40 μg/m³ und
- × Stundenmittelwert 200 μg/m³, darf höchstens 18mal im Jahr überschritten werden.

In der 23. BlmSchV ist darüber hinaus der 98%-Wert der NO₂-Stundenmittelwerte eines Jahres auf 160 μg/m³ limitiert.

3.2 Jahresmittelwert NO₂

Da die NO_2 -Immissionen mit Modellen sehr schwierig zu ermitteln sind, soll im Weiteren ein funktionaler Zusammenhang vom Jahresmittelwert NO_2 zum Jahresmittelwert NO_x ermittelt werden. Die statistischen Kennwerte von NO_2 und NO_x sind in Tabelle 3 für die vier Stationstypen: Berg, Stadt, Verkehr und Land dargestellt.

Tabelle 3 Kennwerte der vier Stationsgruppen aus Abbildung 15. Näheres siehe Text.

Stationatura	Anzahl	Überschrei-	Mittlerer Jahres-	Mittlerer Jahres-
Stationstyp	Zeitreihen	tungen	mittelwert NO ₂	mittelwert NO _x
Land	315	0	18.1 μg/m³	25.3 μg/m³
Stadt	2'198	905	37.3 μg/m³	84.4 µg/m³
Verkehr	141	110	50.0 μg/m³	156.2 μg/m³
Berg	24	0	11.9 μg/m³	16.4 μg/m³

Überschreitungen sind nur bei den Stationstypen Stadt und Verkehr zu beobachten. In städtischen Stationen weisen 41% der Zeitreihen Überschreitungen des Grenzwertes von 40 μ g/m³ NO₂-Jahresmittelwert auf, bei den Verkehrsstationen sind es 78%.

Eine Funktion, die die Beobachtungen aus Abbildung 13 erklären kann, ist die folgende modifizierte gebrochen rationale Funktion.

$$[NO_2] = \frac{A \cdot [NO_x]}{B + [NO_x]} + C \cdot [NO_x].$$

Mit den Koeffizientenschätzern aus der Tabelle 4 erhält man den Graphen der Abbildung 14.

Die Residuen dieser nichtlinearen Regression für Stadtstationen sind annähernd homoskedastisch, es werden 84% der Variation erklärt und alle Koeffizientenschätzwerte sind signifikant von Null verschieden. Das Prognoseintervall ist etwa 15% des Beobachtungsbereichs von NO_x groß. Die modifiziert gebrochen rationale Funktion ist daher eine brauchbare funktionale Beschreibung im relevanten Wertebereich für die Überschreitung des Jahresmittelwertes von NO₂ für Stadtgebiete.

Tabelle 4 Koeffizienten der modifiziert gebrochen rationalen Funktion für die Stationstypen Land, Stadt und Verkehr. Für Berg-Stationen war der maximale NO₂-Jahresmittelwert 20 μg/m³, das ist 50% des Grenzwertes, darum sind keine Koeffizienten angegeben. Alle Koeffizienten sind signifikant von Null verschieden. Näheres siehe Text.

Stationstyp	Α	В	С	Standardabweichung der Regression
Land	+69.22	+76.27	+0.0561	1.7068
Stadt	+67.70	+84.77	+0.0698	3.9920
Verkehr	+102.3	+132.1	-0.0186	5.3958

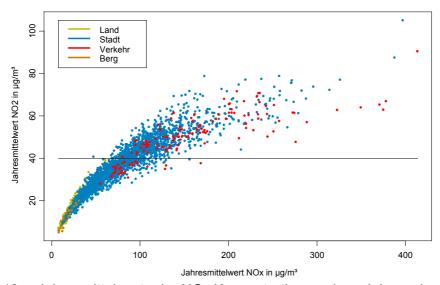


Abbildung 13 Jahresmittelwerte der NO_2 -Konzentrationen eines Jahres über den NO_x -Jahresmittelwerten für die vier Stationsgruppen: Land, Stadt, Verkehr und Berg. 2'678 Beobachtungen aus den Jahren 1956 bis 1998 mit 1'015 Überschreitungen des Grenzwertes von 40 μ g/m³. Näheres siehe Text 5 .

Ein Beispiel für die Abschätzung des NO_2 -Jahresmittelwertes ist hier für städtische Stationen gegeben. Der gemessene oder modellierte NO_x -Jahresmittelwert an einer zur Stationsklasse Stadt gehörenden Messstation sei 55 μ g/m³.

.

Die Darstellung ist hier der besseren Erkennbarkeit wegen beschränkt auf den Ordinatenbereich von 0 bis 100 μg/m³.

Aus der Formel für die modifizierte gebrochen rationale Funktion ergibt sich mit den statistischen Kennzahlen aus Tabelle 4 für ein Jahresmittel NO_x von 55 μg/m³:

$$[NO_2] = \frac{67.70 \cdot 55}{84.77 + 55} + 0.0698 \cdot 55 \pm 7.82 = 30.48 \pm 7.82$$

Es ist bei einem prognostizierten oder gemessenen NO_x -Jahresmittelwert von 55 $\mu g/m^3$ ein NO_2 -Jahresmittelwert zwischen 22.66 $\mu g/m^3$ und 38.30 $\mu g/m^3$ mit einer Sicherheit von 95% zu erwarten. Dieses Ergebnis lässt sich auch aus der Abbildung 14 ablesen.

Ebenfalls aus Abbildung 14 lässt sich folgende Aussage ableiten. Wenn an städtischen Stationen mehr als 119 μ g/m³ NO_x im Jahresmittel prognostiziert oder gemessen werden, sind auch die Grenzwerte der Jahresmittelwerte von NO₂ mit 97.5%-Wahrscheinlichkeit verletzt, denn das Prognoseintervall enthält 95% der Vorhersagen für Grenzwertverletzungen. Die Projektion des Prognoseintervalls bei dem Grenzwert von 40 μ g/m³ NO₂-Jahresmittelwert ist in Abbildung 14 als vertikale Strecken bei 60 μ g/m³ und bei 119 μ g/m³ Jahresmittelwert NO_x eingezeichnet.

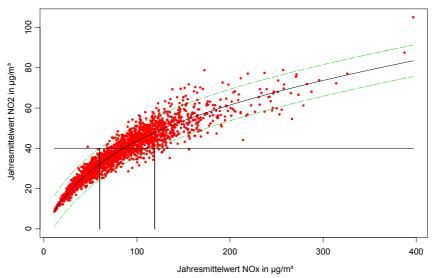


Abbildung 14 Jahresmittelwerte der NO₂-Konzentrationen eines Jahres über den NO_x-Jahresmittelwerten für die städtischen Messstationen. Eingezeichnet ist die modifizierte gebrochen rationale Funktion und das 95%-Prognoseintervall. Näheres siehe Text.

3.3 Stundenmittelwert NO₂

Der Stundenmittelwert von 200 μ g/m³ NO₂ liegt am oberen Rand der Jahresverteilung von NO₂-Zeitreihen. Eine mehr als 18malige Überschreitung des Grenzwertes von 200 μ g/m³ ist extrem selten. Bei einer Messwertbelegung von 100% entspricht die mehr als 18malige Überschreitung des Stundenmittelwertes von 200 μ g/m³ dem 99.79%-Perzentiles der Jahresverteilung in einen Jahr mit 365 Tagen. Mit anderen Worten: Wenn das 99.79%-Perzentil größer als 200 μ g/m³ ist, dann liegt eine mehr als 18malige Überschreitung des Grenzwertes von 200 μ g/m³ vor.

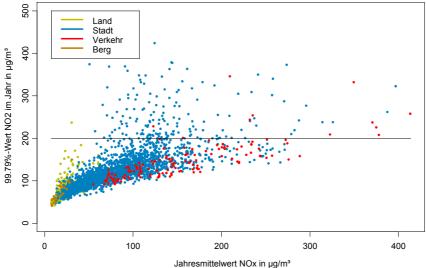


Abbildung 15 99.79%-Wert der NO₂-Konzentrationen eines Jahres über den NO_x-Jahresmittelwerten für die vier Stationsgruppen: Land, Stadt, Verkehr und Berg. 2'678 Zeitreihen aus den Jahren 1956 bis 1998 mit 169 mindestens 19maliger Überschreitungen des Grenzwertes von 200 μg/m³. Die Darstellung ist hier der besseren Erkennbarkeit wegen beschränkt auf den Ordinatenbereich von 0 bis 500 μg/m³. Näheres siehe Text.

Man kann das NO_2 -99.79%-Perzentil als Funktion des Jahresmittelwertes von NO_x statistisch ermitteln. Auf den Mittelwert von NO_x als unabhängige Variable zurückzugreifen liegt nahe, da der Mittelwert von NO_x modelltechnisch recht zuverlässig ermittelt werden kann.

Abbildung 15 zeigt den Scatterplot des NO2-99.79%-Wertes im Jahr über dem zugehörigen NOx-Jahresmittelwert aus dem UBA-Datenbestand für die vier Stationsgruppen. Man erkennt auch hier wieder eine deutliche Trennung der Stationsgruppen.

In Abbildung 15 erkennt man auch, dass die Verkehrsstationen einen höheren NOx-Mittelwert bei vergleichbaren NO2-99.79%-Werten aufweisen als der Durchschnitt aller Zeitreihen. Bei Land- und Bergstationen gilt das Gegenteil. Dies ist Folge der speziellen Zeitreihencharakteristika der verschiedenen Stationsgruppen.

Signifikante Überschreitungen sind nur bei den Gruppen Stadt und Verkehr zu beobachten.

Tabelle 5 Kennwerte der vier Stationsgruppen aus Abbildung 15. Näheres siehe Text.

Stationatyn	Anzahl	Überschrei-	Mittlerer 99.79%-Wert	Mittlerer Jahresmittel-
Stationstyp	Zeitreihen	tungen	NO_2	wert NO _x
Land	315	1	83.9 µg/m³	25.3 μg/m³
Stadt	2'198	157	129.3 µg/m³	84.4 µg/m³
Verkehr	141	11	145.8 μg/m³	156.2 μg/m³
Berg	24	0	71.7 μg/m³	16.4 μg/m³

In Abbildung 16 ist der Scatter-Plot des NO₂-99.79%-Wertes eines Jahres als Funktion des NO_x-Jahresmittelwertes für die 2'198 Zeitreihen der städtischen Stationen gezeigt. Hierbei treten 157 mindestens 19malige Überschreitungen des Grenzwertes auf.

Man kann erkennen, dass mindestens 19malige Überschreitungen des NO_2 -Grenzwertes zwischen einem NO_x -Jahresmittelwert von 40 μ g/m³ und 400 μ g/m³ auftreten. Diese Aussage ist wenig hilfreich, denn dieser Bereich deckt fast den ganzen beobachteten NO_x -Mittelwertbereich ab. Die modifiziert gebrochen rationale Funktion erklärt knapp 34% der Variation in den 99.79%-Werten von NO_2 -Stundenmittelwerten. Auf eine Regression mit einem so großen Unsicherheitsbereich kann man Aussagen über die Grenzwertüberschreitung von NO_2 nicht stützen.

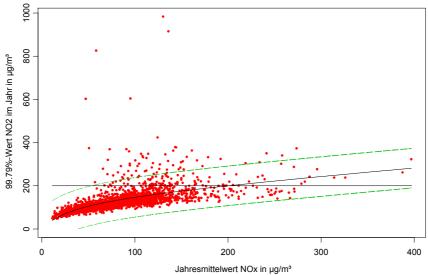


Abbildung 16 Der NO₂-99.79%-Wert eines Jahres als Funktion des NO_x-Jahresmittelwertes für 2'198 Zeitreihen von städtischen Stationen mit einer angepassten modifizierten gebrochen rationalen Funktion, mit dem 95%-Vorhersageband. Näheres siehe Text.

Es gibt aber NO_x-Jahresmittelwertbereiche, in denen die Überschreitungen häufiger sind als die Nichtüberschreitungen und umgekehrt. Diesen Sachverhalt kann man als relative Häufigkeiten darstellen. Dazu ist der Datenbestand in äquidistante NO_x-Jahresmittelwertbereiche zu klassifizieren und der Quotient von Überschreitungen zu der Anzahl der Beobachtungen in der jeweiligen Klasse zu bilden.

Abbildung 17 zeigt die empirische Häufigkeit für städtische Stationen, als offene Kreise dargestellt sind die Verhältnisse aus den äquidistanten NO_x-Klassen. Diese Verhältnisse werden als empirische Wahrscheinlichkeiten interpretiert. Passt man eine logistische Funktion

$$p_{\ddot{\text{U}}\text{berschreitung}} = \frac{1}{1 + exp(-(A + B \cdot Jahresmittelwert NO_x [\mu g / m^3]))}$$

an, so hat man eine funktionale Beziehung zwischen der Wahrscheinlichkeit für die mindestens 19malige NO_2 -Grenzwertüberschreitung und dem Jahresmittelwert von NO_x in $\mu g/m^3$.

Diese Wahrscheinlichkeitsaussage ist bei der Datenlage sicher problemadäquater als eine Aussage zu dem 99.79%-Wert, bei der der Unsicherheitsbereich nahezu den gesamten Messbereich von NO_x überdeckt.

Die statistischen Kennwerte der Koeffizienten der logistischen Funktion sind für die Stadt- und Verkehrsstationen in Tabelle 6 dargestellt. Als Standardabweichung für die logistische Funktion ist der mittlere Standardfehler der Schätzung angegeben.

Tabelle 6 Statistische Kennwerte der Stationsgruppen Stadt und Verkehr. Koeffizienten aus der logistischen Funktion und mittlere Standardabweichung. Für Berg- und Landstationen traten nahezu keine Überschreitungen auf. Näheres siehe Text.

<u>,</u>					
Stationstyp	А	В	Standardabweichung der Regression		
Stadt	-5.216	0.0228	0.0561		
Verkehr	-13.28	0.0444	0.0578		

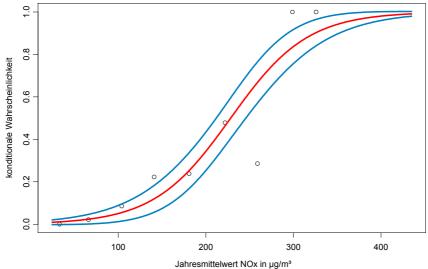


Abbildung 17 Empirische Wahrscheinlichkeit der mindestens 19maligen Grenzwertüberschreitung von 200 μ g/m³ NO₂ (Stundenmittelwert) als Funktion des Jahresmittelwertes von NOҳ in μ g/m³. Die Unsicherheit wird durch das einfache Standardabweichungsintervall der Schätzung dargestellt. Näheres siehe Text.

3.4 98%-Wert NO₂ eines Jahres

Die statistischen Kennwerte der Zeitreihen von NO_x und NO₂, die in Abbildung 18 dargestellt werden, sind in Tabelle 7 für die vier Stationstypen dargestellt.

Tabelle 7 Kennwerte der vier Stationsgruppen aus Abbildung 18. Näheres siehe Text.

district in the state of the st						
Stationatura	Anzahl	Überschrei-	Mittlerer NO ₂ -Jahres-	Mittlerer Jahres-		
Stationstyp	Zeitreihen	tungen	98%-Wert	mittelwert NO _x		
Land	315	0	57.1 μg/m³	25.3 μg/m³		
Stadt	2'198	24	89.0 μg/m³	84.4 μg/m³		
Verkehr	141	4	108.3 μg/m³	156.2 μg/m³		
Berg	24	0	45.5 μg/m³	16.4 μg/m³		

Überschreitungen sind nur bei den Gruppen Stadt und Verkehr zu beobachten. An städtischen Stationen weisen 24 der Zeitreihen Überschreitungen des Grenzwertes von 160 µg/m³ NO₂ auf, bei den Verkehrsstationen sind es nur 4. Obwohl der prozentuale Anteil bei den städtischen Stationen geringer ist als bei den Verkehrsstationen, wird im Folgenden auf die Stadtstationen Bezug genommen, denn 4 Überschreitungen sind absolut zu wenig, um daraus statistische Schlüsse zu ziehen.

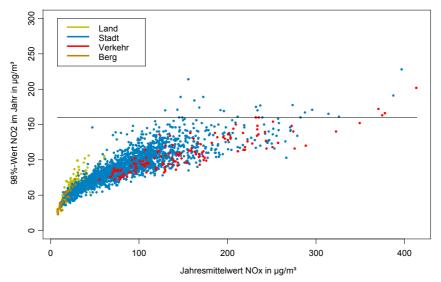


Abbildung 18 Jahres-98%-Werte der NO_2 -Konzentrationen eines Jahres über den NO_x -Jahresmittelwerten für die vier Stationsgruppen: Land, Stadt, Verkehr und Berg. 2'678 Beobachtungen aus den Jahren 1956 bis 1998 mit 28 Überschreitungen des Grenzwertes von 160 μ g/m³. Die Darstellung ist hier der besseren Erkennbarkeit wegen beschränkt auf den Ordinatenbereich von 0 bis 300 μ g/m³. Näheres siehe Text.

Auch hier wird wieder eine modifiziert gebrochen rationale Funktion (siehe Kapitel 3.2) angepasst. Mit den Koeffizientenschätzern aus Tabelle 8 erhält man den Graphen der Abbildung 19.

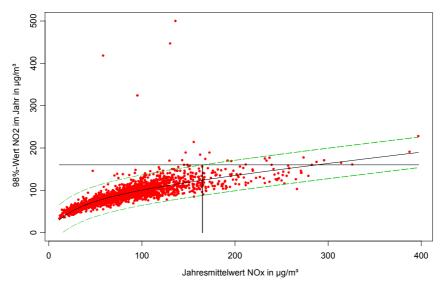


Abbildung 19 Jahres-98%-Werte der NO₂-Konzentrationen eines Jahres über den NO_x-Jahresmittelwerten für die städtischen Messstationen. Eingezeichnet ist die modifiziert gebrochen rationale Funktion und das 95%-Prognoseintervall. Näheres siehe Text.

Tabelle 8 Koeffizientenschätzwerte der gebrochen rationalen Funktion für die städtischen Messstationen

Stationstyp	А В		С	Standardabweichung der Regression
Stadt	98.6141	30.4279	0.24624	18.3853

Die Residuen dieser Regression sind annähernd homoskedastisch, es werden 57% der Variation erklärt und alle Koeffizientenschätzwerte sind signifikant von Null verschieden. Das Prognoseintervall ist etwa 61% des Beobachtungsbereichs von dem Jahresmittelwert NO_x groß.

An Stellen, an denen mehr als $165 \,\mu g/m^3 \,NO_x$ im Jahresmittel prognostiziert oder gemessen werden (in Abbildung 19 durch eine vertikale Strecke eingezeichnet), können auch die Grenzwerte der Jahres-98%-Werte von NO_2 verletzt sein.

4 Beziehungen zwischen statistischen Kennwerten von Partikeln (PM10)

4.1 Allgemeines

Es gibt in der 1. Tochterrichtlinie (TRL 1999/30/EG) zwei Grenzwerte für PM10⁶:

- × Jahresmittelwert 40 µg/m³ und
- × Tagesmittelwert 50 μg/m³ darf höchstens 35mal im Jahr überschritten werden.

Der Jahresmittelwert von PM10 lässt sich aus berechneten PM10-Zeitreihen relativ einfach ermitteln, so dass kein Bedarf für ein statistisches Modell entsteht.

4.2 Tagesmittelwert Partikel (PM10)

Auch Tagesmittelwerte lassen sich aus gemessenen Reihen einfach ermitteln. Bei einer Messwertbelegung von 100% entspricht die mehr als 35malige Überschreitung des Tagesmittelwertes von 50 μ g/m³ der Beurteilung des 90.42%-Perzentiles der Jahresverteilung von Tagesmittelwerten in einen Jahr mit 365 Tagen. Wenn das 90.42%-Perzentil größer als 50 μ g/m³ ist, dann liegt eine mehr als 35malige Überschreitung des Grenzwertes vor.

Für die Berechnung der Tagesmittelwerte mit Modellen müsste man die Immissionen stundenscharf oder zumindest tagesscharf ermitteln. Hierzu wäre eine meteorologische Zeitreihe erforderlich, die man z. B. für ein Prognosejahr nicht ermitteln kann. Wenn man von einer langjährigen meteorologischen Häufigkeitsverteilung ausgeht, kann man zeitbezogene Kenngrößen nicht direkt ermitteln. Man muss daher eine funktionale Beziehung zwischen einer zu ermittelnden Größe, etwa dem PM10-Jahresmittelwert, und dem PM10-90.42%-Wert aus PM10-Zeitreihen des gleichen Stationstyps statistisch ermitteln.

In Abbildung 20 sind die vier linearen Regressionsfunktionen für die vier Stationsgruppen eingezeichnet. In der Legende ist jeweils das Bestimmtheitsmaß angegeben. Die funktionale Beziehung einer linearen Regression lautet allgemein:

 $90.42\% - Wert_{PM10}$ eines Jahres = A + B · Jahresmittelwert_{PM10}

-

Zur Anwendung kommt hier nur die Stufe 1 der Grenzwerte. Die Stufe 2 der Grenzwerte ist an Bedingungen geknüpft, die zur Zeit noch nicht erfüllt sind.

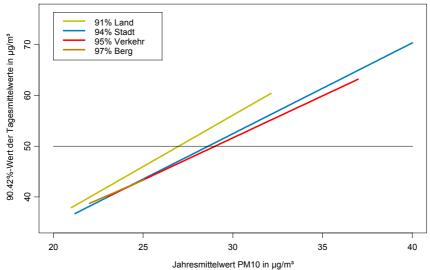


Abbildung 20 Linearen Regressionsfunktionen des 90.42%-Werts der PM10-Konzentrationen eines Jahres über den PM10-Jahresmittelwerten für die vier Stationsgruppen: Land, Stadt, Verkehr und Berg. In der Legende ist der jeweilige Erklärungswert eingetragen. Näheres siehe Text.

In die städtischen Messdaten aus Abbildung 21 lässt sich eine lineare Regression mit einem Bestimmtheitsmaß von 94.38% anpassen. Die Residuen sind schwach heteroskedastisch und in dem Bereich größer 60 μ g/m³ überwiegen die positiven Residuen. In Anbetracht der großen Anzahl von Beobachtungen und der Tatsache, dass sich in dem Bereich um 30 μ g/m³ die Residuen entsprechend der Annahmen des linearen Regressionsmodells verhalten, kann man diese geringfügige Verletzung der Annahmen des linearen Regressionsmodells vernachlässigen.

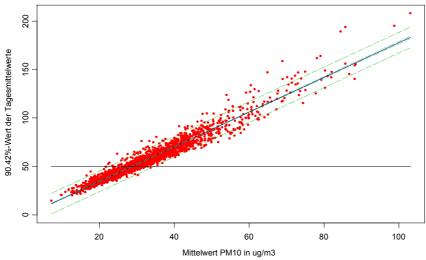


Abbildung 21 PM10-90.42%-Wert eines Jahres als Funktion des PM10-Jahresmittelwertes für 2'110 Zeitreihen von städtischen Stationen mit einer angepassten linearen Funktion, mit dem 95%-Vorhersageband. In 57% der städtischen Zeitreihen zwischen 1990 und 1998 tritt eine mehr als 35malige Überschreitung des Grenzwertes von 50 µg/m³ auf. Näheres siehe Text.

Bei einem Jahresmittelwert von 28.6 μ g/m³ PM10 ist der 90.42%-Wert von PM10 gleich dem Grenzwert von 50 μ g/m³. In dem Jahresmittelwertbereich größer 34.6 μ g/m³ sind 97.5% aller Tagesmittelwerte zu erwarten, bei denen eine mindestens 36malige Überschreitung des PM10-Grenzwertes als Tagesmittelwert zu erwarten ist.

Tabelle 9 Kennwerte der vier Stationsgruppen, deren Regressionsgeraden in Abbildung 20 dargestellt sind. Näheres siehe Text

20 dangestein sind. National Text.						
Stationstyp	Anzahl	Überschrei-	Mittlerer Jahres-	Mittlerer Tages-		
	Zeitreihen	tungen	mittelwert PM10	mittelwert PM10		
Land	221	43	23.09 μg/m³	42.12 μg/m³		
Stadt	2'110	1'280	33.26 μg/m³	58.29 μg/m³		
Verkehr	109	81	39.63 μg/m³	67.59 μg/m³		
Berg	7	0	18.66 μg/m³	33.56 μg/m³		

Für die drei anderen Stationstypen ergeben sich unterschiedliche Funktionen, deren Koeffizienten in Tabelle 10 angegeben sind. Die Koeffizienten sind alle signifikant von Null verschieden und auch die sonstigen Annahmen des linearen Regressionsmodells sind erfüllt.

Tabelle 10 Statistische Kenngrößen für die Koeffizienten der Regression des 90.42%-Wertes PM10 auf den Jahresmittelwert PM10 für die vier unterscheidbaren Stationsgruppen. Näheres siehe Text.

Stationstyp	Α	В	Standardabweichung der Regression
Land	-4.62	2.02	5.37
Stadt	-1.25	1.79	5.29
Verkehr	+1.93	1.65	5.82
Berg	+4.83	1.53	1.73

Für den Stationstyp Berg ist der maximale Jahresmittelwert circa 28 μ g/m³ und der maximale 90.42%-Wert 49.1 μ g/m³, eine Überschreitung des Grenzwertes von 50 μ g/m³ wurde also an den Berg-Stationen nicht gemessen.

5 Beziehungen zwischen statistischen Kennwerten von CO

5.1 Allgemeines

Es gibt in der 2. Tochterrichtlinie (TRL 2000/69/EG) einen Grenzwert für CO

× Gleitender 8-Stunden-Mittelwert 10 mg/m³.

In den Jahren vor 1997 wechseln von Jahr zu Jahr und von Bundesland zu Bundesland die Größenordnungen der CO-Konzentrationen, so dass diese Daten nicht zu verwenden sind. In den Jahren ab 1997 scheint eine Harmonisierung der Aufzeichnung von CO erfolgt zu sein.

5.2 Gleitender 8-Stunden-Mittelwert

Der gleitende 8-Stunden-Mittelwert wird dann berechnet, wenn mehr als 50% der 8 Stunden, die in die Berechnung eingehen, mit gültigen Werten belegt sind. Der Maximalwert der Zeitreihe der gleitenden 8-Stunden-Mittelwerte ist der Wert, der mit dem Grenzwert von 10 mg/m³ zu vergleichen ist.

Statistische Kennwerte für die vier Stationsgruppen sind in Tabelle 11 dargestellt.

Tabelle 11 Kennwerte der vier Stationsgruppen aus Abbildung 22. Näheres siehe Text.

abelie 11 Refiliweite der vier otationsgruppen aus Abblidding 22. Haneres siehe Text.						
Stationstyp	Anzahl	Überschrei-	Mittlerer Jahres-	Mittlerer gleitender 8h		
		tungen	mittelwert CO	Mittelwert CO		
Land	21	0	0.2952 mg/m³	2.0667 mg/m³		
Stadt	474	15	0.6234 mg/m ³	4.5589 mg/m³		
Verkehr	45	3	1.1533 mg/m³	6.0422 mg/m³		
Berg	2	0	0.17 mg/m ³	1.05 mg/m³		

Abbildung 22 zeigt den Maximalwert der Zeitreihe der gleitenden 8-Stunden-Mittelwerte der CO-Konzentrationen über dem Jahresmittelwert der CO-Konzentrationen in mg/m³.

Auch hier erkennt man, dass die Verkehrsstationen einen höheren CO-Mittelwert bei vergleichbaren CO-Maximalwerten der gleitenden 8-Stunden-Mittelwerte aufweisen. Der Grund liegt auch hier wieder in der unterschiedlichen Charakteristik der Zeitreihen von den unterschiedlichen Stationstypen.

Wie man in Abbildung 22 erkennt, ist die Überschreitung des Grenzwertes von 10 mg/m³ in den Jahren 1997 und 1998 ein ausgesprochen seltenes Ereignis.

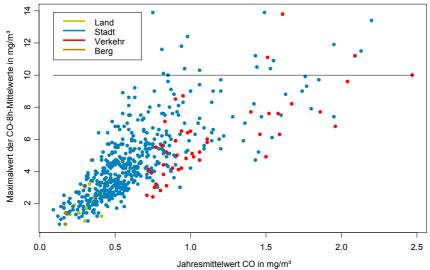


Abbildung 22 Maximalwert der Zeitreihe der gleitenden 8-Stunden-Mittelwerte der CO-Konzentrationen über dem Jahresmittelwert der CO-Konzentrationen in mg/m³ für die vier Stationstypen der Jahre 1997 und 1998. Näheres siehe Text.

Wegen der Seltenheit der Überschreitungen sind für den Überschreitungsbereich belastbare Regressionen kaum aus den Daten abzuleiten. Für die städtischen Stationen wird dennoch die lineare Regression aus der Zeile "Stadt" in der Tabelle 12 in Abbildung 23 grafisch dargestellt.

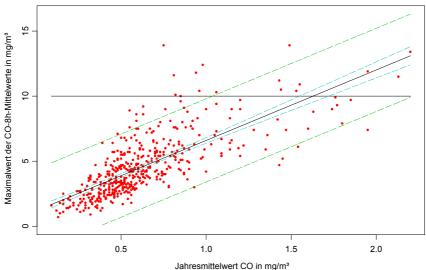


Abbildung 23 Maximalwert der Zeitreihe der gleitenden 8-Stunden-Mittelwerte der CO-Konzentrationen über dem Jahresmittelwert der CO-Konzentrationen in mg/m³ für die städtischen Stationen der Jahre 1997 und 1998. Eingezeichnet ist neben der linearen Regressionsgerade das 95%-Konfidenzband der Regression und das 95%-Prognoseintervall. Es handelt sich um 474 Datenpunkte, davon sind 15 Überschreitungen des Grenzwertes. Näheres siehe Text.

Diese lineare Regression erklärt 56% der Variation in den maximalen gleitenden 8h-Mittelwerten. Der größte Teil der Beobachtungen liegt um den CO-Jahresmittelwert von 0.5 mg/m³. In dem Bereich größer als 0.75 mg/m³ - das ist der Bereich, der für die Grenzwertüberschreitung interessant ist - nimmt die Varianz der Residuen geringfügig zu. Bei CO-Jahresmittelwerten größer 1.04 mg/m³ sind nach dieser Regression 97.5% aller Überschreitungen zu erwarten.

Tabelle 12 Statistische Kenngrößen für die Koeffizienten der Regression des gleitenden 8h-Mittelwertesvon CO auf den Jahresmittelwert CO für die vier unterscheidbaren Stationsgruppen. Näheres siehe Text.

Stationstyp	А	В	Standardabweichung der Regression
Land	0.6060	4.9474	0.8543
Stadt	1.1829	5.4153	1.544
Verkehr	1.3314	4.0845	1.731
Berg	-	-	-

6 Schlussfolgerungen

Für die EU-Grenzwerte von NO_2 (Jahresmittelwert und 99.79%-Wert der Stundenmittelwerte) werden funktionale Beziehungen zu dem Jahresmittelwert von NO_x hergestellt. Für den Grenzwert aus der 23. BlmSchV für NO_2 wird ebenfalls eine Funktion zu dem Jahresmittelwert von NO_x abgeleitet. Für alle drei Kenngrößen ist die Angabe einer Unsicherheit möglich.

Für PM10 gibt es den Grenzwert für den Tagesmittelwert. Für diesen Tagesmittelwert wird eine funktionale Beziehung zu dem Jahresmittelwert mit Angabe der Unsicherheit abgeleitet.

Die Ableitung von verallgemeinerbaren Formeln für den maximalen 8-Stundenmittelwert von Kohlenmonoxid zu dem Jahresmittelwert von CO ist als einigermaßen belastbares Ergebnis nur für Stadtstationen möglich, da zu wenige vergleichbare Datensätze zur Verfügung standen.

Tabelle 13 Zusammenstellung der Koeffizienten (auf 3 signifikante Stellen gerundet) der Gleichungen für die verschiedenen Grenzwerte am Beispiel der Stadtstationen

changer for the total and						
Kennwert	Funktionsform	Α	В	С	Einheit	Standardabweichung der Regression
NO ₂ -Jahresmittel	MGRF ⁷	+67.7	+84.8	+0.0698	μg/m³	3.99
NO ₂ -99.79%-Wert	logistisch ⁸	-5.22	0.0228	-	μg/m³ ⁹	0.0561
NO ₂ -98%-Wert	MGRF ⁷	98.6	30.4	0.246	μg/m³	18.3
PM10-Tagesmittel	linear ¹⁰	-1.25	1.79	-	μg/m³	5.29
CO-8h-Mittel	linear ¹⁰	1.18	5.42	-	mg/m³	1.54

Die Tabelle 13 gibt für Stadtstationen eine Zusammenstellung der Gleichungen für die verschiedenen Grenzwerte.

_

Definition der modifiziert gebrochen rationalen Funktion siehe Kapitel 3.2

Definition der logistischen -Funktion siehe Kapitel 3.3

Die Ordinateneinheit ist eine Wahrscheinlichkeit

Definition linearen Funktion siehe Kapitel 4.2

7 Literatur

HlfU Auswertung von Immissionsdaten – Fehlwertersetzung in Immissionszeitreihen Schriftenreihe der Hessischen Landesanstalt für Umwelt: "Umweltplanung, Arbeits- und Umweltschutz, Heft Nr.120, August 1991

IVU Umwelt 2002.1

Automatische Klassifizierung der Luftschadstoff-Immissionsmessungen aus dem LIMBA-Meßnetz, Förderkennzeichen (UFOPLAN) 200 42 265, Datenaufbereitung \cdot 1. Teilbericht

IVU Umwelt 2002.2

Automatische Klassifizierung der Luftschadstoff-Immissionsmessungen aus dem LIMBA-Meßnetz, Förderkennzeichen (UFOPLAN) 200 42 265, Klassifizierung · 2. Teilbericht

R.G.Derwent and D.R.Middleton, 1996

An Empirical Function for the Ratio NO₂:NO_x in Clean Air, Vol.26, No.3/4, pp 57

Derwent, R.G., Middelton, D.R., Field R.A., Goldstone M.E., Lester J.N., Perry R.,1995
Analysis and Interpretation of Air Quality Data from an Urban Roadside Location in Central London

RRL 96/62/EG

Richtlinie des Rates über die Beurteilung und die Kontrolle der Luftqualität vom 27.9.1996 (Rahmenrichtlinie)

TRL 1999/30/EG

Richtlinie des Rates vom 22.4.1999 über Grenzwerte für Schwefeldioxid, Stickstoffdioxid und Stickstoffoxide, Partikel und Blei in der Luft (1. Tochterrichtlinie)

TRL 2000/69/EG

Richtlinie des Europäischen Parlaments und des Rates vom 16.11.2000 über Grenzwerte für Benzol und Kohlenmonoxid in der Luft (2. Tochterrichtlinie)

8 Anhang: Präsentation